๐ LLM
AI generated
JEPA: Value-guided action planning with world models
## Advanced Planning with JEPA Models
Deep learning models capable of reasoning about their environment require the ability to capture the underlying environmental dynamics. Joint-Embedded Predictive Architectures (JEPA) offer a promising approach to model such dynamics, learning representations and predictors through a self-supervised prediction objective.
A recent study focuses on improving action planning within JEPA models. The research proposes shaping the representation space so that the negative goal-conditioned value function for a reaching cost in a given environment is approximated by a distance (or quasi-distance) between states.
A practical method has been introduced to enforce this constraint during the training phase. The results show a significant improvement in planning performance compared to standard JEPA models, particularly in simple control tasks.
๐ฌ Commenti (0)
๐ Accedi o registrati per commentare gli articoli.
Nessun commento ancora. Sii il primo a commentare!