Hardware Configuration Matrix

GPU specifications, complete build examples, and constraint-based selection guidance

> GPU_COMPARISON_MATRIX

Key specifications for LLM inference workloads

GPU MODEL VRAM TDP PRICE RANGE MAX MODEL (Q4) INFERENCE SPEED SCENARIO FIT
RTX 5090 (Blackwell) 32 GB GDDR7 575W $2,000-$2,500 (est.) 70B Q8 ~60-70 tok/s (13B) Next-gen workstation, High-throughput inference
RTX 5080 (Blackwell) 16 GB GDDR7 360W $1,000-$1,200 (est.) 34B ~45-50 tok/s (13B) Performance/Efficiency balance, Enterprise IT
RTX 5070 (Blackwell) 12 GB GDDR7 250W $600-$750 (est.) 13B ~35-40 tok/s (7B) Budget next-gen, Developer workstations
RTX 4090 24 GB 450W $1,600-$2,000 70B ~40 tok/s (13B) Enterprise IT, Pharma (validated)
RTX 4080 SUPER 16 GB 320W $1,000-$1,200 34B ~35 tok/s (13B) Enterprise IT, Edge (power constrained)
RTX 4070 Ti SUPER 16 GB 285W $800-$900 34B ~30 tok/s (13B) Budget Enterprise, Edge deployment
RTX 4070 12 GB 200W $550-$650 13B ~25 tok/s (7B) Entry-level, Developer workstations
NVIDIA A6000 48 GB 300W $4,500-$5,000 180B (Q4) ~30 tok/s (70B) Manufacturing (A&D), Pharma, Enterprise
NVIDIA L40S 48 GB 350W $7,000-$8,000 180B (Q4) ~35 tok/s (70B) Data center, High-throughput inference
NVIDIA H100 PCIe 80 GB 350W $25,000-$30,000 405B (Q4) ~60 tok/s (70B) Enterprise scale, Multi-model serving
NVIDIA Spark 64 GB HBM3e 300W $10,000-$15,000 (est.) 405B (Q4) ~45 tok/s (70B) Workstation AI, Large model inference
AMD RX 7900 XTX 24 GB 355W $900-$1,000 70B (Q4) ~25 tok/s (13B)* Budget alternative (ROCm 6.0+)
AMD RX 7900 XT 20 GB 315W $700-$800 34B (Q4) ~22 tok/s (13B)* Mid-range alternative, Developer workstations
AMD RX 7800 XT 16 GB 263W $500-$600 34B (Q4) ~18 tok/s (13B)* Budget entry, Testing/development
AMD RX 6900 XT 16 GB 300W $400-$600 34B (Q4) ~15 tok/s (13B)* Previous gen, Cost-effective testing
AMD MI210 64 GB HBM2e 300W $5,000-$6,000 240B (Q4) ~28 tok/s (70B)* Professional workloads, ROCm mature
AMD MI250X 128 GB HBM2e 560W $10,000-$12,000 405B+ (Q4) ~40 tok/s (70B)* Data center, Multi-GPU alternative
AMD MI300X 192 GB HBM3 750W $15,000-$18,000 405B+ (Q8) ~70 tok/s (70B)* H100 competitor, Massive memory bandwidth

* AMD performance estimates with ROCm 6.0+. Software compatibility may vary by framework.

> MINI_PC_CPU_INFERENCE

High-RAM mini PCs for edge deployment and CPU-only workloads

MINI PC MODEL CPU MAX RAM TDP PRICE RANGE MAX MODEL (CPU) INFERENCE SPEED SCENARIO FIT
GMKtec EVO-X2 AI Ryzen AI Max+ 395 + RX 8060S (40 CU RDNA 3.5) 128 GB LPDDR5X-8000 ~80W $1,800-$2,600 70B Q8 ~20-30 tok/s (13B) High-performance edge, iGPU inference, 8K displays
GMKtec EvoX2 Ryzen 9 7940HS 128 GB DDR5 65W $800-$1,200 70B Q4 ~8-12 tok/s (13B) Edge deployment, Silent operation
Minisforum MS-01 Intel i9-13900H 96 GB DDR5 65W $700-$1,000 34B Q4 ~6-10 tok/s (13B) Small office, Homelab
Beelink GTR7 Pro Ryzen 9 7940HS 64 GB DDR5 54W $600-$800 13B Q4 ~5-8 tok/s (7B) Budget edge, IoT gateway
Intel NUC 13 Extreme i9-13900K 64 GB DDR5 + GPU Slot 125W base $1,400-$1,800 70B Q4 (with GPU) Varies (GPU-dependent) Compact + GPU option (RTX 4070 max)
Mac Mini M2 Pro M2 Pro (12-core) 32 GB Unified ~50W $1,300-$1,600 13B Q4 ~15-20 tok/s (7B) Apple ecosystem, Efficient inference
Mac Studio M2 Ultra M2 Ultra (24-core) 192 GB Unified ~100W $4,000-$5,000 70B Q8 ~25-30 tok/s (13B) Professional macOS, Silent operation
Olares (Upcoming) TBD (ARM/x86) Up to 128 GB ~80W (est.) TBD 70B Q4 (est.) TBD Personal cloud, Self-hosted AI
Framework Mainboard Intel Ultra 7 / Ryzen 7 Up to 96 GB DDR5 ~60W $500-$1,500 34B Q4 ~8-12 tok/s (13B) Modular/repairable, Portable AI dev

CPU inference speeds are 3-6× slower than GPU but viable for latency-tolerant use cases. Apple Silicon unified memory architecture provides better performance than x86 CPU-only. Note: Olares specs are estimates pending official release.

> COMPLETE_BUILD_EXAMPLES

Full system specifications across 5 budget tiers

> BUILD_TIER_00: MINI PC / EDGE ($800 - $2,600)

Component List (High-End)

  • System: GMKtec EVO-X2 AI
  • CPU: AMD Ryzen AI Max+ 395 (up to 5.1GHz)
  • GPU: Radeon RX 8060S iGPU (40 CU, RDNA 3.5, ~RTX 4060-4070 mobile)
  • RAM: 128GB LPDDR5X-8000MHz (shared with GPU)
  • Storage: 1TB NVMe PCIe 4.0
  • Power: ~80W
  • I/O: WiFi 7, USB4, 8K display (4 screens), SD 4.0

Budget Option: GMKtec EvoX2 (Ryzen 9 7940HS, $800-$1,200)

Performance & Constraints

Max Model: 70B Q8 (iGPU-accelerated, good throughput for edge)
Use Cases: Edge inference with GPU acceleration, ROCm support, silent operation, 8K visual output
Constraints: Unified memory (GPU shares RAM), single user, lower throughput than discrete GPU

→ Best for: Factory floor, retail POS, remote sites with GPU needs, fanless deployments, space-constrained environments, multi-display setups

> BUILD_TIER_01: ENTRY ($2,000 - $2,500)

Component List

  • GPU: RTX 4070 (12GB) or RTX 5070 Blackwell (12GB GDDR7)
  • CPU: AMD Ryzen 7 7700X
  • RAM: 32GB DDR5-5600
  • Storage: 1TB NVMe Gen4
  • PSU: 750W 80+ Gold
  • Cooling: Air (stock or tower)

AMD Alternative: RX 7800 XT (16GB, ROCm 6.0+, $500-$600)

Performance & Constraints

Max Model: 13B Q4 comfortably
Use Cases: Development, prototyping, small deployments
Constraints: Cannot run 70B models, limited multi-user capacity

→ Best for: Developer workstations, PoC projects, small teams

> BUILD_TIER_02: MID-RANGE ($4,000 - $5,000)

Component List

  • GPU: RTX 4090 (24GB) or RTX 5090 Blackwell (32GB GDDR7)
  • CPU: AMD Ryzen 9 7950X
  • RAM: 64GB DDR5-6000
  • Storage: 2TB NVMe Gen4 + 4TB SATA SSD
  • PSU: 1000W 80+ Platinum (1200W for 5090)
  • Cooling: AIO 280mm or better

AMD Alternative: RX 7900 XTX (24GB, ROCm 6.0+, $900-$1,000)

Performance & Constraints

Max Model: 70B Q4 (single user)
Use Cases: Small team production, validated environments
Constraints: Limited concurrent users (2-3), no multi-GPU scaling

→ Best for: Enterprise IT pilot, Pharma validation (single workstation)

> BUILD_TIER_03: PROFESSIONAL ($10,000 - $12,000)

Component List

  • GPU: 2× RTX 4090 (48GB total) OR 1× A6000 (48GB)
  • CPU: AMD Threadripper 7960X (24-core)
  • RAM: 128GB DDR5-5200 ECC
  • Storage: 4TB NVMe Gen4 (RAID 1) + 8TB SATA
  • PSU: 1600W 80+ Titanium (dual GPU) or 1000W (A6000)
  • Cooling: Custom loop or AIO 360mm

Performance & Constraints

Max Model: 180B Q4 (A6000) or 70B Q8 (dual 4090)
Use Cases: Multi-user production, GxP environments
Constraints: Single server (no redundancy), 5-10 concurrent users max

→ Best for: Manufacturing (A&D), Pharma production, Small enterprise deployment

> BUILD_TIER_04: ENTERPRISE ($30,000 - $35,000)

Component List

  • GPU: 2× A6000 (96GB total) OR 4× L40S (192GB)
  • CPU: Dual Intel Xeon Gold 6458Q (64-core total)
  • RAM: 512GB DDR5 ECC Registered
  • Storage: 8TB NVMe Gen4 (RAID 10) + 20TB SATA RAID
  • PSU: Redundant 2000W 80+ Titanium
  • Chassis: 4U rackmount with redundant cooling

Performance & Constraints

Max Model: 405B Q4 OR multiple 70B instances
Use Cases: Department-scale production, multi-model serving
Constraints: Single rack unit (no geo-redundancy), cooling requirements

→ Best for: Mid-size enterprise, Multi-department deployment, High-availability needs

> BUILD_TIER_05: DATA CENTER ($80,000 - $120,000+)

Component List

  • GPU: 4× H100 PCIe (320GB) OR 8× L40S (384GB) OR 5× Spark (320GB) OR 2× MI300X (384GB)
  • CPU: Dual AMD EPYC 9554 (128-core total)
  • RAM: 1.5TB DDR5 ECC Registered
  • Storage: 20TB NVMe Gen5 (RAID 10) + 100TB object storage
  • Networking: Dual 100GbE RDMA
  • Infrastructure: Redundant PSU, hot-swap components, KVM

Note: NVIDIA Spark and AMD MI300X offer competitive price/performance to H100 tier

Performance & Constraints

Max Model: Multiple 405B instances, tensor parallelism capable
Use Cases: Organization-wide production, multi-tenant
Constraints: Requires data center facilities, cooling (15-20kW), ops team

→ Best for: Large enterprise, Multi-site deployment, Regulated industries with scale

> HARDWARE SELECTION CONSTRAINTS

Constraint-based selection guidance: Not recommendations, but constraint implications.

Budget Constraint

If budget < $1.5K: Mini PC tier (Framework, GMKtec, Beelink). CPU-only inference (slow). Edge deployments only.
If budget < $3K: Entry tier GPU build (RTX 4070/5070, RX 7800 XT). Cannot run 70B models. Multi-user not viable.
If budget $3K-$10K: Mid-range viable (RTX 4090/5090, RX 7900 XTX). Single 70B possible. Limited concurrency (2-5 users).
If budget $10K-$40K: Professional tier (A6000, L40S, Spark, MI210/250X). Multi-GPU or pro cards. Production-ready (5-15 users).
If budget > $40K: Enterprise/Data Center (H100, MI300X, multi-GPU). Scaling, redundancy, multi-model serving feasible.

Deployment Environment Constraint

If edge/remote site: Mini PC preferred (GMKtec EVO-X2 AI, Olares, Framework). Low power (60-80W), fanless, compact.
If factory floor/POS: Mini PC or ruggedized workstation. Noise/dust concerns. Consider Intel NUC with GPU slot for hybrid needs.
If office/lab: GPU workstation viable (Blackwell/RDNA 3 generation). Cooling and power available.
If data center: Rack-mount enterprise tier (H100, Spark, MI300X). Redundancy and cooling infrastructure present.
If mobile/vehicle: Mini PC only (Framework for modularity). Power and thermal constraints critical.

Model Size Constraint

If 7B-13B models sufficient: Entry tier viable (12GB VRAM min).
If 34B-70B required: Mid-range minimum (24GB VRAM), Professional preferred.
If 70B+ Q8 or 180B+ Q4: Professional tier minimum (48GB+ VRAM).
If 405B models: Enterprise tier (80GB+ VRAM per GPU, multi-GPU likely).

Concurrency Constraint

If 1-2 concurrent users: Entry tier sufficient.
If 3-5 concurrent users: Mid-range minimum. Queue management required.
If 5-15 concurrent users: Professional tier. Multiple model instances or larger VRAM.
If 15+ concurrent users: Enterprise tier. Load balancing, multi-server likely needed.

Validation/Regulatory Constraint

If FDA 21 CFR Part 11 required: Professional tier minimum. ECC RAM required. Redundancy preferred.
If ITAR/EAR/CUI: Professional or Enterprise. Air-gap capability. Audit logging critical.
If general enterprise (non-regulated): Any tier based on other constraints.
If development/testing only: Entry tier acceptable. Validation not required.

NEXT STEPS

Architecture Fit Tool → Deployment Checklists → Ask Mode → ← Back to Home